欧美free性护士vide0shd,老熟女,一区二区三区,久久久久夜夜夜精品国产,久久久久久综合网天天,欧美成人护士h版

首頁綜合 正文
目錄

柚子快報(bào)激活碼778899分享:R語言統(tǒng)計(jì)分析——回歸診斷2

柚子快報(bào)激活碼778899分享:R語言統(tǒng)計(jì)分析——回歸診斷2

http://yzkb.51969.com/

參考資料:R語言實(shí)戰(zhàn)【第2版】

????????R語言的car包提供的大量函數(shù),大大增強(qiáng)了擬合和評(píng)價(jià)回歸模型的能力。如下:

函數(shù)目的qqPlot()分位數(shù)比較圖durbinWatsonTest()對(duì)誤差自相關(guān)性做Durbin-Watson檢驗(yàn)crPlots()成分與殘差圖ncvTest()對(duì)非恒定的誤差方差做得分檢驗(yàn)spreadLevelPlot()分散水平檢驗(yàn)outlierTest() Bonferroni離群點(diǎn)檢驗(yàn) avPlots()添加的變量圖形influencePlot()回歸影響圖scatterplot()增強(qiáng)的散點(diǎn)圖scatterplotMatrix()增強(qiáng)的散點(diǎn)圖矩陣vif()方差膨脹因子

? ? ? ? 另外,gvlma包提供了對(duì)所有線性模型假設(shè)進(jìn)行檢驗(yàn)的方法。

1、正態(tài)性

? ? ? ? 與基礎(chǔ)包中的plot()函數(shù)相比,qqPlot()函數(shù)提供了更為精確的正態(tài)假設(shè)檢驗(yàn)方法,它畫出了在n-p-1個(gè)自由度的圖分布下的學(xué)生化殘差(studentized residual,也稱學(xué)生化刪除殘差或折疊化殘差)圖形,其中n是樣本大小,p是回歸參數(shù)的數(shù)目(包括截距項(xiàng))。如下:

# 加載car包

library(car)

# 獲取數(shù)據(jù)

states<-as.data.frame(state.x77[,c("Murder","Population",

"Illiteracy","Income","Frost")])

# 擬合多元線性模型

fit<-lm(Murder~Population+Illiteracy+Income+Frost,data=states)

# 繪制Q-Q圖

qqPlot(fit,

simulate=TRUE,

main="Q-Q Plot")

? ? ? ? ?當(dāng)simulate=TRUE時(shí),將會(huì)使用參數(shù)自助法生成95%的置信區(qū)間。

? ? ? ? 從上圖中可以看出,除了Nevada,所有的點(diǎn)都離直線很近,并都落在置信區(qū)間內(nèi),這表明正態(tài)性假設(shè)符合得很好。作為一個(gè)異常值,我們也應(yīng)該關(guān)注Nevada,它有一個(gè)很大的正殘差值(真實(shí)值-預(yù)測(cè)值),表明模型低估了該地的謀殺率。

# 查看Nevada數(shù)據(jù)

states["Nevada",]

# 查看Nevada的擬合數(shù)據(jù)(預(yù)測(cè)值)

fitted(fit)["Nevada"]

# 查看Nevada的殘差

residuals(fit)["Nevada"]

# 查看Nevada的學(xué)生化殘差

rstudent(fit)["Nevada"]

注:學(xué)生化殘差是殘差除以它的標(biāo)準(zhǔn)差后得到的數(shù)值,用以直觀地判斷誤差項(xiàng)服從正態(tài)分布這一假定是否成立,若假定成立,學(xué)生化殘差的分布也應(yīng)服從正態(tài)分布?!緦W(xué)生化殘差_百度百科】

? ? ? ? 可視化誤差還有其他方法,比如使用residplot()函數(shù)生成學(xué)生化殘差柱狀圖(即直方圖),并添加正態(tài)曲線、核密度曲線和軸須圖。

resiplot<-function(fit,nbreaks=10){

z<-rstudent(fit)

hist(z,breaks=nbreaks,freq=FALSE,

xlab="Studentized Residual",

main="Distribution of Error")

rug(jitter(z),col="brown")

curve(dnorm(x,mean=mean(z),sd=sd(z)),

add=TRUE,col="blue",lwd=2)

lines(density(z)$x,density(z)$y,

col="red",lwd=2,lty=2)

legend("topright",

legend=c("Normal Curve","Kernel Density Curve"),

lty=1:2,col=c("blue","red"),cex=0.7)

}

resiplot(fit)

? ? ? ? 如上圖所示,除了一個(gè)明顯的離群點(diǎn),誤差基本上都很好的服從了正態(tài)分布。

2、誤差的獨(dú)立性

? ? ? ? 判斷因變量值(或殘差)是否相互獨(dú)立,最好的方法是依據(jù)收集數(shù)據(jù)方式的先驗(yàn)知識(shí)。例如,時(shí)間序列數(shù)據(jù)通常呈現(xiàn)自相關(guān)——相隔時(shí)間越近的觀測(cè)相關(guān)性大于相隔越遠(yuǎn)的觀測(cè)。car包提供了一個(gè)可做Durbin-Watson檢驗(yàn)的函數(shù),能夠檢測(cè)誤差的序列相關(guān)性。繼續(xù)使用上面的案例進(jìn)行Durbin-Watson檢驗(yàn):

durbinWatsonTest(fit)

? ? ? ? 結(jié)果中,p值不顯著(p=0.242)說明無自相關(guān)性,誤差之間相互獨(dú)立。滯后項(xiàng)(lag=1)表明數(shù)據(jù)集中每個(gè)數(shù)據(jù)都是與其中后一個(gè)數(shù)據(jù)進(jìn)行比較的。該檢驗(yàn)適用于時(shí)間獨(dú)立的數(shù)據(jù),對(duì)于非聚集型的數(shù)據(jù)并不使用。注意,durbinWatsonTest()函數(shù)使用的自助法來導(dǎo)出p值。如果添加了選項(xiàng)simulate=TRUE,則每次運(yùn)行測(cè)試時(shí)獲得的結(jié)果都將略有不同。

3、線性

? ? ? ? 通過成分殘差圖(component plus residual plot)也稱偏殘差圖(partial residual plot),我們可以查看因變量與自變量之間是否呈非線性關(guān)系,也可以查看是否有不同于已設(shè)定線性模型的系統(tǒng)偏差,圖形可用car包中的crPlots()函數(shù)繪制。繼續(xù)使用上面的案例數(shù)據(jù),如下:

# 導(dǎo)入car包

library(car)

# 繪制成分殘差圖

crPlots(fit)

? ? ? ? 如果成分殘差圖中的圖形存在非線性,則說明我們對(duì)自變量的函數(shù)形式建模不夠充分。那么就需要添加一些曲線成分,如多項(xiàng)式,或?qū)σ粋€(gè)或多個(gè)變量進(jìn)行變換(如log(x)代替x),或用其他回歸變體形式而不是線性回歸。

? ? ? ? 從上圖中可以看出,4個(gè)自變量的成分殘差圖可以認(rèn)為是線性的,尤其是前兩個(gè)自變量。

4、同方差性

? ? ? ? car包提供了兩個(gè)有用的函數(shù),可以判斷誤差方差是否恒定。

????????ncvTest()函數(shù)生成一個(gè)計(jì)分檢驗(yàn),零假設(shè)為誤差方差不變,備擇假設(shè)為誤差方差隨著擬合值水平的變化而變化。若檢驗(yàn)顯著,則說明存在異方差性(誤差方差不恒定)。

? ? ? ? spreadLevelPlot()函數(shù)創(chuàng)建一個(gè)添加了最佳擬合曲線的散點(diǎn)圖,展示標(biāo)準(zhǔn)化殘差決對(duì)值與擬合值得關(guān)系。

# 導(dǎo)入car包

library(car)

ncvTest(fit)

spreadLevelPlot(fit)

? ? ? ? 根據(jù)ncvTest()的計(jì)分檢驗(yàn)結(jié)果顯示不顯著(p=0.186),說明滿足方差不變假設(shè)。?

? ? ? ? spreadLevelPlot()函數(shù)作圖顯示,數(shù)據(jù)點(diǎn)在水平的最佳擬合曲線(虛線)周圍呈水平隨機(jī)分布。如果違反了該假設(shè),我們將看到一個(gè)非水平的曲線。而運(yùn)行代碼結(jié)果顯示“Suggested power transformation: 1.209626”,建議進(jìn)行1.2次冪的冪次轉(zhuǎn)換。因接近1,所以不需要進(jìn)行變換。

柚子快報(bào)激活碼778899分享:R語言統(tǒng)計(jì)分析——回歸診斷2

http://yzkb.51969.com/

精彩文章

評(píng)論可見,查看隱藏內(nèi)容

本文內(nèi)容根據(jù)網(wǎng)絡(luò)資料整理,出于傳遞更多信息之目的,不代表金鑰匙跨境贊同其觀點(diǎn)和立場(chǎng)。

轉(zhuǎn)載請(qǐng)注明,如有侵權(quán),聯(lián)系刪除。

本文鏈接:http://m.gantiao.com.cn/post/19485404.html

發(fā)布評(píng)論

您暫未設(shè)置收款碼

請(qǐng)?jiān)谥黝}配置——文章設(shè)置里上傳

掃描二維碼手機(jī)訪問

文章目錄