欧美free性护士vide0shd,老熟女,一区二区三区,久久久久夜夜夜精品国产,久久久久久综合网天天,欧美成人护士h版

目錄

大模型應(yīng)用框架LangChain和LlamaIndex哪個(gè)更好用?

大模型已經(jīng)發(fā)展一年了,然而大模型的幻覺問題一直令人詬病,其中檢索增強(qiáng)生成(RAG)是緩解幻覺比較有效的方式。

目前有兩個(gè)基于LLM的應(yīng)用框架可以很容易實(shí)現(xiàn)RAG Pipeline,分別是LangChain和LlamaIndex,本文將在四個(gè)任務(wù)上對(duì)比一下這兩個(gè)框架的不同實(shí)現(xiàn)。

LangChain: 一個(gè)使用LLM開發(fā)應(yīng)用程序的通用框架。

LlamaIndex: 一個(gè)專門用于構(gòu)建RAG系統(tǒng)的框架。

盡管 LlamaIndex 的目標(biāo)市場(chǎng)比 LangChain 要小得多(使用Github stars表示社區(qū)的活躍度),但其資金數(shù)額接近LangChain。LangChain還提供了更多企業(yè)級(jí)的產(chǎn)品(比如LangServe、LangSmith等等)。

LlamaIndex 和 LangChain 是用于構(gòu)建LLM應(yīng)用程序的兩個(gè)框架。雖然LlamaIndex專注于RAG用例,但LangChain似乎應(yīng)用更廣泛。但它們?cè)趯?shí)踐中有何不同?

在這篇文章中,我們比較了兩個(gè)框架在完成四個(gè)常見任務(wù)時(shí)的表現(xiàn):

連接到本地LLM實(shí)例并構(gòu)建聊天機(jī)器人。

索引本地文件并構(gòu)建RAG系統(tǒng)。

將以上兩者結(jié)合起來,制作一個(gè)具有RAG功能的聊天機(jī)器人。

將聊天機(jī)器人轉(zhuǎn)換為Agent,這樣它可以使用更多的工具并進(jìn)行簡(jiǎn)單的推理。         

原文鏈接:https://blog.csdn.net/2301_78285120/article/details/135895441


本文內(nèi)容根據(jù)網(wǎng)絡(luò)資料整理,出于傳遞更多信息之目的,不代表金鑰匙跨境贊同其觀點(diǎn)和立場(chǎng)。

轉(zhuǎn)載請(qǐng)注明,如有侵權(quán),聯(lián)系刪除。

本文鏈接:http://m.gantiao.com.cn/post/19102455.html

發(fā)布評(píng)論

您暫未設(shè)置收款碼

請(qǐng)?jiān)谥黝}配置——文章設(shè)置里上傳

掃描二維碼手機(jī)訪問

文章目錄